Symposium 2025
About Us
Research groups
Friends
Research in the Hubrecht Institute is supported by a state-of-the-art research infrastructure, enabling our scientists to achieve high goals. The facilities are supported with skilled lab technicians and are refined in-house to suit the researchers’ needs.
Imaging is an important research technique at the Hubrecht Institute. In order to facilitate the fast-growing demand on imaging tools, in 2009 the ‘Hubrecht Imaging Center (HIC)’ was founded.
Imaging at the HIC ranges from simple phase-contrast imaging of cells to high-resolution imaging of living tissue. Multiple advanced systems are available at the HIC, such as: confocal, two-photon, spinning disk and lightsheet microscopes. The HIC keeps up-to-date with the latest developments in microscopy and regularly new advanced systems are acquired.
At the Hubrecht Institute, we use imaging to follow intra- and extracellular processes in time. Using intravital microscopy, for instance, we are able to visualize the adaptive properties of cells in live animals. This technique allows us to capture images of biological processes. Also, by using advanced microscopy techniques, we can investigate processes like mitosis, and gain insight in chromosomal instability.
The HIC ensures high performance and optimal use of the advanced imaging equipment at the Hubrecht Institute by doing quality checks on the systems periodically, training of new researchers and providing support to advanced imaging experiments.
Single-cell analysis examines the sequence information from individual cells.
Each typical human cell contains about 6 billion base pairs of DNA, known as the genome. This genome is expressed differently in each human cell. Different levels of gene expression give each cell its specific characteristics and function through the production of different proteins. The expression of genes can be measured by analyzing the RNA, molecules that are transcribed from the DNA and convey genetic information to the ribosome. This is where protein production takes place.
To understand and analyze the regulation of gene expression patterns, quantitative RNA sequencing is used. To determine expression levels, in traditional sequencing methods a mix of millions of cells is used. But because that information is pooled, it lacks a high enough resolution to draw conclusions about individual cells.
Using single-cell sequencing, the expression patterns of independent cells can be investigated by examining their own sequence information. This provides a higher resolution. Also, by pooling this information from multiple independent cells, the function of cells can be examined within their context. For instance, by sequencing single cells from a tumor, the heterogeneity of the cancer can be assessed. In a larger scale, an atlas of all common and rare cell types could provide insight about their expression profiles and their abundance within an organ. One of the projects contributing to this is the Human Cell Atlas. This way, single cell analysis could lead to a better understanding of human health, diagnosing and monitoring, and the development of personalized treatments.
As a response to the growing demand for single cell sequencing projects, in July 2016, the Single Cell Sequencing Facility at the Hubrecht Institute was founded. This facility enabled labs within and outside of the Hubrecht Institute that lack the know-how and equipment to support their research with single cell transcriptome data between July 2016 and June 2018. In June 2018 the spin-off company Single Cell Discoveries opened its doors to keep serving the continuously growing demand for single cell sequencing experiments of the scientific community worldwide.
The Flow Cytometry Core facility offers state of the art instrumentation for routine flow cytometry and cell sorting. The facility is continuously expanding with the newest software and machinery for both sort and analysis capabilities of up to 18 fluorescent parameters, and is committed to meet all of the flow cytometry needs for the Hubrecht Institute, the UMC Utrecht and the Princess Máxima Center.
The Flow Cytometry Core facility is available for:
The Hubrecht Institute has its own animal facility that is home to nematodes (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), zebrafish (Danio rerio), frogs (Xenopus laevis) and rodent species such as mice, spiny mice and rats.
Where possible, we replace our animal experiments with in vitro models, such as organoids, reducing the number of laboratory animals. The scientific models that do not allow for full replacement are constantly refined and reduced to keep the number of animal experiments to a minimum. All of our experiments are subject to common Dutch regulation.
Additionally, The Royal Netherlands Academy of Arts and Sciences (KNAW), which the Hubrecht Institute is part of, has signed the Dutch Transparency Agreement on Animal Testing. More information about the Agreement can be found here.
In addition to the facilities the Hubrecht Institute has in its own building, Utrecht Life Sciences provides more than 50 shared facilities. These can be used by all researchers that work there. An overview of all available facilities on the Utrecht Science Park is offered on the website of Utrecht Life Sciences.